Late Miocene garnet-bearing andesites in the Northern Andean Block and their tectonic implications

Susana Hoyos¹, Marion Weber², Jose Duque Trujillo¹, Andres Cardenas¹, Elizabeth Cottrell³, Alejandro Beltran-Trivino⁴, and Albrecht von Quadt⁵

¹Universidad EAFIT ²Universidad Nacional de Colombia Sede Medellín ³National Museum of Natural History, Smithsonian Institution ⁴EAFIT University ⁵ETH Zurich Institute of geochemistry and Petrology

November 24, 2022

Abstract

Garnet-bearing volcanic rocks are extremely rare at convergent margins, with few known occurrences worldwide [ref 1-2]; however, such rocks are common within the late Miocene volcanic rock suite of the Northern Andean block (NAB) along the Central Cordillera, Colombia [ref 3-5]. They have been linked to pre-existing zones of crustal weakness that channeled magmas to the upper crust in a short period of time [ref 5-6]. Here we present new geochronological and petrographic data to constrain the timing and petrogenesis of these unusual rocks. We obtained mineral chemical analyses from 7 porphyritic-andesite samples from the eastern flank of the Central Cordillera and the Cauca-Patia Basin, Colombia. Garnet phenocrysts are almandine in composition, ranging from 23 to 29 wt.% FeO, 6 to 8 wt.% CaO, and 1 to 4 wt.% MnO. In some samples, garnets are homogeneous with no reaction rims and lacking inclusions; however, in other samples, garnets show re-absorption rims and inclusion assemblages similar to the rock matrix (plag, amph, \pm bt) as well as rare plagioclase coronas. The high Ca and low Mn contents of the NAB garnet cores are consistent with crystallization at ~1.2GPa, based on phase equilibrium experiments of [ref 7], while garnet rim assemblages are congruent with a second stage of crystallization at ~0.8GPa under water-undersaturated conditions. Finally, a pre-eruption dehydration stage is evidenced by the presence of breakdown rims in amphibole crystals. Our new U-Pb in zircon ages reveal that NAB garnet-bearing volcanic rocks formed between 9 and 8 Ma. Taken together, our data suggest a rapid ascent of the NAB magmas associated with the onset of regional volcanism and extension, and possibly the development of the Caldas Tear, a slab window within the Nazca Plate. [1] Green & Ringwood (1968) CMP. [2] Harangi et al. (2001) Journal of Petrology. [3] Orrego (1975) UNAL Colombia. [4] García (1983) UNAL Colombia. [5] Bissig et al. (2017) EG. [6] Weber et al. (2018) SGC (in press). [7] Alonso-Pérez et al. (2006) CMP.

Late Miocene garnet-bearing andesites in the Northern Andean Block and their tectonic implications

Susana Hoyos¹ (shoyosm1@eafit.edu.co), Marion Weber², Elizabeth Cottrell³, José Fernando Duque¹, Andrés L. Cárdenas-Rozo¹, Alejandro Beltran-Triviño¹ Albrecht von Quadt⁴ ¹ Universidad EAFIT ² Universidad Nacional de Colombia ³ Smithsonian Institution, NMNH ⁴ Institute for Geochemistry and Petrology, ETH Zurich

ntroduction

Garnet-bearing volcanic rocks are rare at convergent margins, and few known occurrences have been reported worldwide However, they are a b feature within the Miocene volcanic rock suite of the Northern Andean Block (NAB) along the Central Cordillera of Colombia.

Garnets are generally found in porphyritic andesites from the b Amagá-Cauca-Patía Basin (ACPB).

Our results suggest a rapid ascent of the NAB magmas with associated the development of the Caldas Tear, a possible slab window within the Nazca Plate.

SMBF: Santa Marta-Bucaramanga Fault; OF: Oca Fault

Motivation question

Is it possible to determine the tectonic scenario underlying the occurrence of garnetbearing and esites in NAB during the Late Miocene?

Cordillera and the ACPB (75° W).

- Detailed petrographic descriptions.
- Mineral chemical data and transects in garnet phenocrysts (EPMA).
- Zircon U/Pb geochronology, performed by LA-ICP-MS.

Results

Type-1: homogeneous, euhedral to subhedral, no reaction rims and lacking inclusions.

Type-2: slightly zoned, anhedral to subhedral, with reaction rims, and inclusions of plg, hbl and bt.

