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Abstract

An objective of the solar and space physics communities has been to predict the behavior of the interconnected physical systems

that bring space weather to Earth. One approach is to use first-principles models that may predict behavior of the various

space plasma regimes from the magnetized solar corona to Earth’s upper atmosphere. We focus on space weather forecasts

in the thermosphere-ionosphere (T-I), with lead time based on the period following a solar eruption. There are generally 1-4

days lead time before the interplanetary coronal mass ejection (ICME) reaches the Earth’s magnetopause. Forecasting the

behavior of the T-I with such multi-day lead times requires new ways of using and assessing first principles models, which are

capable of predicting many details of the T-I response, including the time history of the global electron density distribution,

neutral densities and neutral winds. All facets of the complex T-I system response must be predicted based on input solar and

interplanetary parameters. Another influence on the forecast is the condition of the T-I at the time a forecast is produced (e.g.

shortly after the CME eruption epoch). However, the role of such pre-conditioning is not well understood for lead times of a

few days. To improve our understanding of these forecasts, we have submitted more than 120 multi-day simulation periods

to NASA’s Community Coordinated Modeling Center, spanning three coupled T-I models. Approximately 40 T-I storms have

been simulated, driven by solar wind and EUV parameters alone. We will present an analysis that characterizes how T-I models

respond to the information content of the solar wind, mediated through climatological models of high latitude forcing, and the

possible influence of pre-existing conditions. Smoothing across mesoscale variability is inevitable in this scenario. Analyzing

the response across events and across models reveals critical information about the predictability of the T-I system as an ICME

approaches.
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• Detection of a CME at the sun can be used to initiate forecasts of solar wind
conditions at Earth and then the response of the global thermosphere-
ionosphere (TI) storm, using first-principles models

• We assessed custom forecastable-mode simulations of three models running
at CCMC: TIE-GCM, GITM and CTIPe

• Forecastable-mode simulations are driven by the measured solar wind
parameters and short-term (~few day) F10.7 index forecasts

• We developed forecast metrics that define positive phase (increased TEC) and
negative phase (decreased TEC) storm features – relative to quiet background

• We compared data-driven TEC maps to simulations using binary evaluation
criteria: are “observed” storm-time features matching simulations?

• What factors limit TI forecasts initiated after CME detection?

OVERVIEW

• We have developed ionospheric storm metrics that are valuable to assess how first-principles simulations may perform for  
forecasts initiated after CME eruption (1-4 day lead time)

• Storm-feature based metrics can be further refined to understand how simulations capture basic features of the storm (positive 
and negative phases), not necessarily exact details of the TEC behavior

• The forecast scenario – driving by solar wind conditions alone – is challenging given the complexities of storms
• These simulated forecasts are “optimistic” and do not account for errors in a solar wind ensemble forecast
• Approximately 40 storm periods have been run at CCMC with three models, available for further statistical analysis
• The community needs improved tools to determine factors limiting such forecasts

CONCLUSIONS AND FUTURE WORK

SIMULATED FORECAST: SUCCESS RATE AND FALSE ALARM RATE
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APPROACH: METRICS FOR GLOBAL IONOSPHERIC
STORMS BASED ON TOTAL ELECTRON CONTENT (TEC)

SIMULATED FORECAST: SKILL SCORES

Forecast Success: for a given GIM disturbance, Model predicts a disturbance that starts +/- 3 hours of the GIM 

disturbance  starting time and ends +/- 3 hours of the GIM disturbance ending time

Forecast Success Rate

= 
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Forecast False Alarm Rate
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Forecast Success Rate 
April 2000 Storm

Forecast Success Rate 
July 2000 Storm

Forecast False Alarm Rate 
April 2000 Storm

Forecast False Alarm Rate 
July 2000 Storm

Key points
• Rates are threshold 

dependent
• Models below 35% 

success rate
• One model has clearly 

higher success rate in April 
2000

• False alarm rate increases 
with threshold – models 
can overestimate 
increasingly larger (and 
fewer) features

• Forecasting the complex TI 
response using only solar 
wind and F10.7 inputs is 
very challenging

• What are the factors 
determining forecast 
success rates and false 
alarm rates?All three models are coupled thermosphere-ionosphere (TI) first-principles models 

X. Meng, A. J. Mannucci, O. P. Verkhoglyadova, B. T. Tsurutani, “Assessing an Approach to Ionospheric Total Electron Content Forecasting using Physics-based Models” No. MT-401, Session PSW.1,
42nd General Assembly COSPAR Pasadena CA July 2018 

(see previous panel for definition of ”disturbance”)

Min SYMH (~Dst) -310 nT Min SYMH (~Dst) -330 nT

Steps to calculate the metric: 

• Find occurrences when dTEC reaches a threshold (level) for 
each grid box within successive 3 hour windows

• Do separately for observation (GIM) and simulation within 
each time window

• Define TP, FP, FN and TN based on if threshold is reached at 
any time within each time window 

• Compute separately for positive (+) and negative (-) dTEC

True Skill Statistic (TSS) approach to TEC-based metric 

TSS = 
=>

=>?@A − @>
@>?=A

TSS: Bloomfield et al., 2012

Very few features 
at high threshold

Disturbance Threshold Key points
• All models show some skill
• One model is most consistently positive TSS
• Another model reaches a higher peak TSS
• A particular TSS value weakly represents 

underlying contingency table
• Recommend analyzing all four contingency table 

values according to location, time and local time

Negative storm features analyzed (TEC decreases)

Not to be confused with T/F Negative!

See McGranaghan et al., 2018

Averages across all grid boxes and times
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