Using Atomic Clocks and Quantum Gradiometers Onboard Satellites for Determining the Earth's Gravity Field

Juergen Mueller ${ }^{1}$ and $\mathrm{Hu} \mathrm{Wu}^{2}$
${ }^{1}$ Leibniz University of Hannover
${ }^{2}$ Leibniz Univerity of Hannover

November 21, 2022

Abstract

Satellite missions like GRACE (now followed by GRACE-FO) and GOCE have remarkably advanced our knowledge on the global Earth's gravity field, by measuring the first and second derivatives of the gravitational potential. However, a more precise gravity field model with better spatial and temporal resolution is still highly required by various geoscience disciplines such as oceanography, solid Earth physics, geodesy, etc. New technologies based on quantum optics emerged and quickly developed in the past years. They will enable novel observation concepts and deliver gravimetric observations with an unprecedented accuracy level in future. For the first time, optical clocks provide the particular opportunity to directly observe gravity potential differences through measuring the relativistic redshift between clocks connected by dedicated links ("relativistic geodesy"). Moreover, cold atom interferometry and optical gradiometers have extensively been studied. They will potentially provide gravity gradient measurements with an accuracy of about one order of magnitude better than the electrostatic gradiometer that was used in GOCE. To figure out how these future gravimetric observations may benefit the modelling of the Earth's gravity field, we ran simulations using multi-source data, including gravity gradients, gravity accelerations and (satellite-based) clock measurements. Estimated instrument errors are mapped to the gravity field coefficients. Additionally, the individual contribution of each type of the new observations is evaluated, including its spectral behavior. Our results indicate that resulting gravity field solutions might be one order of magnitude more accurate than the current satellite-only models.

Using Atomic Clocks and Quantum Gradiometers Onboard Satellites for Determining the Earth's Gravity Field

Institut für Erdmessung (IfE), Leibniz Universität Hannover, Germany

Motivation

In the past decades, satellite missions like GRACE and GOCE have advanced our knowledge on the Earth's gravity field, by measuring the first- and second-order derivatives of the gravitational potential. However, a more precise gravity field model wurther getter spatio-temporal resolution is still highly demanded for geodetic and furtic goosce applications. In recent years, new technogles based on quan ond er and quat first time atomic clocks provide a particular peportunity to directly observe gravity potential differences through measuring the relativistic redshift between clocks ("relativistic geodesy"). A quantum gradiometer, eg, the Cold Atom Interferometry (CAI) gradiometer, is expected to deliver gravity gradients with an accuracy of about one order of magnitude higher than that of GOCE. The contribution of these quantum sensors to improve the Earth's gravity field are evaluated, where the instrumental errors are mapped to the gravity field coefficients through closed-loop simulations.

Retrieving the Earth's gravity field
The global gravity field is expressed as
$T=\frac{G M}{R} \sum_{n=0}^{\infty}\left(\frac{R}{r}\right)^{n+1} \sum_{m=-n}^{n} \bar{K}_{n m} \bar{Y}_{n m}(\theta, \lambda)$, $\bar{Y}_{n m}(\theta, \lambda)=\bar{P}_{n m}(\cos \theta) e^{i m \lambda}$.

It can be retrieved by observing

- potential values (T);
- gravity accelerations ($T_{i}=\frac{\partial T}{\partial r_{i}}$);
- gravity gradients $\left(T_{i j}=\frac{\partial^{2} T}{\partial r_{i} \partial r_{j}}\right)$.

Fig. $6:$ Gravity field solution from clock data with
and the formal errors right), in logarithm scale.
Potential for deriving the temporal gravity field
A simulated orbit was used

- Altitude: 350 km ;
- Inclination: 89.5°
- Repeat cycle: 377 revolutions in 24 nodal days.

Cold Atom Interferometry (CAI) gradiometer
Compared to the electrostatic one, the CAI gradiometer has - better sensitivity: $1.0-5.0 \mathrm{mE} / \sqrt{\mathrm{Hz}}$;
wide spectral range: flat noise down to very low frequency.

Input for simulation
Orbit: GOCE, 71 days ($1^{\text {st }}$ Mar.
$10^{\text {th }}$ May, 2013), 2 s ;

- Model: EIGEN-6c4, d/o 360
- Noise: white, $5.0 \mathrm{mE} / \sqrt{\mathrm{Hz}}$.

Two pointing modes

Nadir:

- one axis: $V_{y y}$;
- three axes (tilting mirror): $V_{x x}, V_{y y}, V_{z z}$

Inertial: $V_{x x}, V_{y y}, V_{z z}$

Fig. 11: Degree medians of gravity field coeficient differerces w.rt. EIGEN-6cct, in terms of geoid heieght. The left tigure shows results in th
up tod 240 .

Combined analysis

Fi.g. 12: Degree medians of gravity field coefficien differences w.r.t. EIIGN. - CC, in in terms of feoid heigh
To compare with the official CHAMP GRACE and GOC To compara with the official CHAMM, GRACE and GOCE
gravity field solutions, we scaled the clock, CAl an gravity field solutions, we staled the
their combined solutionsto two years.

Contact:
Email: \{mueller, wuhul@ife.uni-hannover.de
: https://www.ife.uni-hannover.de
https://www.geoq.uni-hannover.de

Conclusions

- Clocks deliver scalar observations (not affected by attitude errors), and improve the long-wavelength gravity field, e.g., below d/o 30 ;
Clocks show a good potential to detect temporal gravity field signals at very low degrees;
CAl gradiometry in 3 -axes modes factor of 5

Acknowledgements

This study is supported by the Deutsche Forschungsgemeinschaft (DFG) Collaborative
Research Center 1128 "Relativistic Geodesy and Gravimetry with Quantum Sensors (geoa)". This work was also partly supported by the ESA project "Study of a CAl gradiometer sensor and mission concepts" and the ISSI team of research on "Spacetime metrology, clocks and relativistic geoodesy

