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Abstract

A hybrid Linear Programming (LP) and Nonlinear Programming (NLP) optimization model is developed for California’s
hydropower operations. Built on top of Pyomo library, a high optimization modeling language in Python, the model can connect
to several freely available, state-of-the-art solvers. In this model, fast evaluation of LP and detailed model representation of
NLP are fully utilized. The hybrid model solves the same problem with linear approximation (a simplified objective function
representation) and with NLP solver, where no simplification is made to objective function. Outputs from LP model are used as
initial values (warmstart) for NLP model’s decision variables, which reduce number of iterations for convergence and so runtime.
The model is capable of representing large network of hydropower plants that are in serial or parallel, or fixed and variable head
plants. The model is used to evaluate effects of increased solar photovoltaic (PV) generation in California. California has a goal
of generating electricity from renewable resources at least 33% by 2020, and 50% by 2030, and solar PV generation supplies
most of renewable generation portfolio during daytime. This expanded use of solar PV changes generation pattern from one
daily peak system to two daily peak system. Due to excess generation of solar PV, negative prices can occur during daytime.

Therefore, evaluating effects of solar PV on hydropower operations and adapting to new conditions are essential.



jy UCDAVIS Evaluating Solar PV Effects on California’s Hydropower

s CENTER For

o e s Generation with a Hybrid LP-NLP Optimization Model

AGU Fall Meeting 2018
Washington, D.C. Mustafa S. Dogan™ and Jay Lund
H31N-2141 Civil and Env. Engineering, University of California, Davis, *Presenter: msdogan@ucdavis.edu

Hybrid LP-NLP Hydropower o Model Application to California
4 Optlmlzatlon MOdeI Modeled hydropower plants Hourly Average Reservoir Inflow (m?/s)

California's Long-Term Energy Generation (TWhly)

. . , 0 — —7 N
California’s hydropower averages 19% \ J shasta 676 MW) . Figure 10. Hourly

of its in-state electricity generation [ o Evaluate effects of changed price patterns Folsom (199 MW) average reservoir

®m Solar Thermal

Hydropower capacity of 14 GW is 18% w0 " with a hybrid LP-NLP optimization model | NS GE ) inflow (M3/s) Of - T

1 | California’s Hydropower System

= \Wind
Pine Flat (165 MW) modeled

of total installed capacity L= e o Built using Pyomo, a high-level Python- IS hydropower plants A T
’ (Data: CDEC) | T % $

/ Shasta  Folsom New Pine

6 hy .\". pOwer pl tS Melones  Flat

¢

u Natural Gas

Most hydropower generation (74%) based optimization modeling language

Coal

from high-elevation plants C .
° P oo o The objective is to maximize total

CAISO runs the decentralized energy hydropower revenue within water Plants in serial and parallel P

price market and regulate . - availability and capacity constraints _ . Figure 11. Hourly | o “ o ™"
Solar photovoltaic (PV) generation is Figure 1. California's long-term Short-term operations |

1

—1

Revenue million $

re | | _ _ _ average energy
. . . . electricity generation (TWh/year) o The problem is solved first with a linear | ' & Hourlv time-ste price ($/MWh)
INcreasing and affectlng OperathnS, from different sources (Data: y “gr P between 2010-17

. . S o approximation (LP), then nonlinear . .
C If E C t e I - a ]
including hydropower alfornia Energy Commission (NLP) model is initialized and solved 5 \ P,'?f laking approach: (Data: CAISO)

. . Figure 6 Hydropower revenue curve - OI1I2I3I4I5I6I7I8I9I1OIL1C;L$I13I14I15I16I17I18I19I20I21I22I23
LP is fast but less accurate, NLP is slow single plant and time-step as a

Solar Photovoltaic (PV) Effects but more accurate function ?f storage and retllease with 7 Preliminary Results: Water
- Linear approximation reduces NLP a lihear approximation i
on Energy Prices ! bproximar . + Storage, Generation & Revenue

iterations and runtime

Network-flow optimization model with
nodes and links

o Hourly runs for each year

o 2011-2017 average hourly
streamflow for each plant

Store water to gain head and
release during peak hours

Most turbine releases occur during
1000 -
Storagq 3000 peak hours 19-22 : : ——

€ Milliop, 7°7° 5000

T_
~
U

Ut
o
$

|
Ul
rror million

~ G
o
E

Py
S S
®
o) )
N
®

0

3 Hours

Figure 2. HOUF|y |Oad (MVV) igeoﬁ[)hesrmal [ s;nall_hydro 222:: erma 7 | 7 | . . AS SOIar PV increases, StOrage
B thermal biogas B wind spill_Keswick.2017-08-31 00 flow_Keswick.2017-07-31 00 Flgure 7. ReSIduaIS (error) between

_ Figure 12. Modeled hourly average
20 - —A-2017 ——2016 —%-2015 —© 2014 flow Keswick 2017-08.31 00 e — the nonlinear curve and linear peak Converges tO one pOInta IeSS Storage (mIHIOn m3)

Net load = total load — variable (So|ar + . W e e e = Figure 8. An example approximation daytlme releas.e and generatllon B T
Wmd) load 50 - network-flow representation Some generatlcn OCCUrs durlng 1 o

. . 40 | Detailed Network Schematic Of th e h bri d m O d el . | — 4
Solar PV is about 11% of total in-state . Y morning peak hours 7-3 = ggig

electricity generation in 2017 - - Plants with smaller storage have 1— 2017
Solar PV reduces daytime net load The Mathematical Formulation & less adaptation flexibility |

. Lk = e v S 8 e il | 5 |
and affeCt energy prICeS 012345678 91011121314151617181920212223 Data FIOW | o _ ﬁ

Hour
2012

: : : : Figure 3. Count of negative hourly _ 2017
Negative price pattern shift from night energy prices across years and LP model formulation: Inputs Outputs 1 Small — 2o [ — | T

to daytime the shifted pattern (Data: CAISO) ’ i b b

across years (Data: CAISO) 80

— ReserVO|r T Storage o 2813 Hours
Energy Storage | Figure 13. Modeled hourly average

_ Lo N i D.ecisionvariables: Price Turbine eneration (MWh

3 Increased Energy Price Volatility + 2=, 2P Ky V0D €A fon Stream [ Hybrid ]{Release | ) e
LP-NLP ,, :

_ Flow Energy - { Figure 14. Hourly average

Constraints Model . hydropower revenue ($)

Generation | N,

Shasta Keswick Folsom Nimbus New Melones Pine Flat

Objective function

. . 00 I total load 77 | o . . Plant
Energy prices are highly Figure 4. Hourly o] Xij < uy V(1)) €4 (pperbound) Properties Value of
correlated with net load statewide s | Xij 2 1y V(1)) € 4 (Lower bound) — Capacity

: Expansion 8 C | T
T _ average total and 2som X.— > X, =0, €N (Mass balance) Figure 9. Data flow of the model onciusions
Shlﬂmg from one peak to net load (MW) 25 Z ] Z J with typical inputs and outputs

two-peak system Data: CAISO) 2 L
D e NLE model formulation: o Solar PV reduces operational flexibility for hydropower decisions

SOIar PV deCI’eaSGS net |Oad 15000 ObjeCtive function . plant eﬂ:ICIe.nCy .
p: water density o Hours when solar PV peaks become less valuable in terms of

and increases energy price maxZ= Y Y enoprg Knm @3+ BY? 4y +0) At p + Xn g gravitat inq i i
o , 2, o PG K (@l BN Ay ) A b Pn¥m  g: gravitational constant hydropower revenue resulting in less generation

volatility mEAstownEdsior ey a, 8,7, c: polynomial
AL o As storage capacity increases, capability to adapt to price volatilities

. Figure 5. HOUFly Constraints Dfeci)svivon variables:
The changed price pattern energy price (§/MWh) X: parameters for head

. Y: storage _ .
affect hydropower operations, s iotal and net load Xy < Flow capy, Vm € Ario,, p: energy price (NLP) or Increases

(Upper bound) _ _
especially plants with sizable (MW) Between tn < Storage capy, Y € Asior unit benefit (LP) References:
2010 - 2017

. | AA oo Xin 2 b, V1€ Arion (Lowerbound) X flow : : : :
storage CapaC|ty (Data: CAISO) ésﬁ @8-‘5 N | Y,, > Deadpool,,vn € A.,,, v st « CAISO: http://oasis.caiso.com/mrioasis « CDEC.: http://cdec.water.ca.gov
' v APrice vs Net Load ZX +ZY ] ZX +ZY ] O N, e Mass balance) storage « CEC Energy Almanac: https://www.energy.ca.gov/almanac < Pyomo: http://www.pyomo.org
15 i il ij ij| — Y flowr stor
SR I N +  GitHub page (currently private repo): https://msdogan.github.io/pyomo_hydropower

18000 20500 23000 25500 28000 30500
Load (MW)

N
()]

N
o

w
()]

w
o

Energy Price ($/MWh)

N
(¢}




