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Abstract

A hybrid Linear Programming (LP) and Nonlinear Programming (NLP) optimization model is developed for California’s

hydropower operations. Built on top of Pyomo library, a high optimization modeling language in Python, the model can connect

to several freely available, state-of-the-art solvers. In this model, fast evaluation of LP and detailed model representation of

NLP are fully utilized. The hybrid model solves the same problem with linear approximation (a simplified objective function

representation) and with NLP solver, where no simplification is made to objective function. Outputs from LP model are used as

initial values (warmstart) for NLP model’s decision variables, which reduce number of iterations for convergence and so runtime.

The model is capable of representing large network of hydropower plants that are in serial or parallel, or fixed and variable head

plants. The model is used to evaluate effects of increased solar photovoltaic (PV) generation in California. California has a goal

of generating electricity from renewable resources at least 33% by 2020, and 50% by 2030, and solar PV generation supplies

most of renewable generation portfolio during daytime. This expanded use of solar PV changes generation pattern from one

daily peak system to two daily peak system. Due to excess generation of solar PV, negative prices can occur during daytime.

Therefore, evaluating effects of solar PV on hydropower operations and adapting to new conditions are essential.
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o California’s hydropower averages 19% 
of its in-state electricity generation

o Hydropower capacity of 14 GW is 18% 
of total installed capacity

o Most hydropower generation (74%) 
from high-elevation plants

o CAISO runs the decentralized energy 
price market and regulate

o Solar photovoltaic (PV) generation is 
increasing and affecting operations, 
including hydropower
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Figure 1. California’s long-term 
electricity generation (TWh/year) 

from different sources (Data: 
California Energy Commission 

Energy Almanac)

o Energy prices are highly 
correlated with net load

o Shifting from one-peak to 
two-peak system

o Solar PV decreases net load 
and increases energy price 
volatility

o The changed price pattern 
affect hydropower operations, 
especially plants with sizable 
storage capacity

Figure 2. Hourly load (MW) 
across years (Data: CAISO)

Figure 3. Count of negative hourly 
energy prices across years and 

the shifted pattern (Data: CAISO)

0

50

100

150

200

250

300

19
83

19
85

19
87

19
89

19
91

19
93

19
95

19
97

19
99

20
01

20
03

20
05

20
07

20
09

20
11

20
13

20
15

20
17

California's Long-Term Energy Generation (TWh/y)

0

50

100

150

200

250

300
Net Imports

Other

Solar Thermal

Solar PV

Wind

Biomass

Geothermal

Natural Gas

Oil

Coal

Hydropower

Nuclear0

50

100

150

200

250

300

19
83

19
85

19
87

19
89

19
91

19
93

19
95

19
97

19
99

20
01

20
03

20
05

20
07

20
09

20
11

20
13

20
15

20
17

California's Long-Term Energy Generation (TWh/y)

0

50

100

150

200

250

300
Net Imports

Other

Solar Thermal

Solar PV

Wind

Biomass

Geothermal

Natural Gas

Oil

Coal

Hydropower

Nuclear

Figure 4. Hourly 
statewide 

average total and 
net load (MW)
(Data: CAISO)

Figure 5. Hourly 
energy price ($/MWh) 

vs total and net load 
(MW) Between

2010 - 2017
(Data: CAISO)

o Evaluate effects of changed price patterns 
with a hybrid LP-NLP optimization model

Figure 6. Hydropower revenue curve 
for a single plant and time-step as a 
function of storage and release with 

a linear approximation

Figure 7. Residuals (error) between 
the nonlinear curve and linear 

approximation
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Decision variables:
X: flow
Y: storage

LP model formulation:

NLP model formulation:

Figure 9. Data flow of the model 
with typical inputs and outputs 

Figure 10. Hourly 
average reservoir 

inflow (m3/s) of 
modeled 

hydropower plants 
(Data: CDEC)

Figure 11. Hourly 
average energy 

price ($/MWh) 
between 2010-17 

(Data: CAISO)

Figure 8. An example 
network-flow representation 
of the hybrid model
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X: flow
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Decision variables:
X: flow

o The objective is to maximize total 
hydropower revenue within water 
availability and capacity constraints

o The problem is solved first with a linear 
approximation (LP), then nonlinear 
(NLP) model is initialized and solved

o LP is fast but less accurate, NLP is slow 
but more accurate

o Linear approximation reduces NLP 
iterations and runtime

o Network-flow optimization model with 
nodes and links

o 6 hydropower plants
o Plants in serial and parallel
o Short-term operations
o Hourly time-step
o Price-taking approach
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o Built using Pyomo, a high-level Python-
based optimization modeling language

Figure 12. Modeled hourly average 
storage (million m3)

Figure 13. Modeled hourly average 
generation (MWh)

1 California’s Hydropower System

2 Solar Photovoltaic (PV) Effects 
on Energy Prices

3 Increased Energy Price Volatility

4 Hybrid LP-NLP Hydropower 
Optimization Model

5 The Mathematical Formulation & 
Data Flow

6 Model Application to California

7 Preliminary Results: Water 
Storage, Generation & Revenue

8 Conclusions

o Hourly runs for each year
o 2011-2017 average hourly 

streamflow for each plant
o Store water to gain head and 

release during peak hours
o Most turbine releases occur during 

peak hours 19-22
o As solar PV increases, storage 

peak converges to one point, less 
daytime release and generation

o Some generation occurs during 
morning peak hours 7-8

o Plants with smaller storage have 
less adaptation flexibility

o Solar PV reduces operational flexibility for hydropower decisions
o Hours when solar PV peaks become less valuable in terms of 

hydropower revenue resulting in less generation
o As storage capacity increases, capability to adapt to price volatilities 

increases

Figure 14. Hourly average 
hydropower revenue ($)

• CAISO: http://oasis.caiso.com/mrioasis • CDEC: http://cdec.water.ca.gov
• CEC Energy Almanac: https://www.energy.ca.gov/almanac • Pyomo: http://www.pyomo.org
• GitHub page (currently private repo): https://msdogan.github.io/pyomo_hydropower

Small 
Storage

o Net load = total load – variable (solar + 
wind) load

o Solar PV is about 11% of total in-state 
electricity generation in 2017

o Solar PV reduces daytime  net load 
and affect energy prices

o Negative price pattern shift from night 
to daytime
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𝑒: plant efficiency
𝜌: water density
𝑔: gravitational constant
𝛼, 𝛽, 𝛾, 𝑐: polynomial 
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