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Abstract

A number of insitu and passive microwave satellite sensors have observed Arctic sea ice and Greenland Ice Sheet (GrIS) mass

loss trends over recent decades. Along with sea and land ice declines, above-freezing, near-surface air temperatures are observed

earlier in boreal spring and later in autumn thus extending periods of melt beyond the core of summer (JJA). Little is known

about whether lengthening periods of open ocean proximate to the ice sheet, for instance, demonstrably effect unseasonal GrIS

melt events. Here, a new Baffin Bay sea ice advance dataset is utilized to determine dates of sea ice growth along Greenland’s

west coast for the 2011-2015 period. Preceding, multi-scale ocean-atmospheric conditions, including at the Baffin-GrIS interface,

are analyzed and linked to unseasonal melt events observed at a series of on-ice automatic weather stations (AWS) along the

K-transect in southwest Greenland. The local marine versus synoptic influence on the above and below freezing surface air

temperature events is assessed through analyses involving AWS winds, pressure, and humidity observations. These surface

observations are further compared against Modele Atmospherique Regional (MAR), Regional Atmospheric Climate Model

(RACMO), and ERA-Interim reanalysis fields to understand the airmass origins and (thermo)dynamic drivers of the melt

events. Results suggest that the K-transect transition season melt events, primarily in the ablation zone, are strongly affected

by ridging atmospheric circulation patterns that transport warm, moist air from lower latitude land-ocean areas toward west

Greenland. While local conduction of oceanic surface heat appears to impact coastal air temperatures, consistent with previous

studies, marine air incursions from Baffin waters onto the ice sheet are likely obstructed by barrier flows and the pressure

gradient-driven katabatic regime off of central Greenland.

1



RESEARCH POSTER PRESENTATION DESIGN © 2015

www.PosterPresentations.com

Results:	On-Ice	AWS	and	Regional	Model	Composites

Results:	Synoptic	Factors

Conclusions
Three main conclusions emanate from this study:
• While longer autumn open water conditions on Baffin Bay likely impact coastal air

temperature and tidewater glacier behaviors, heat and moisture advection off these
waters does not appear to influence unseasonal GrIS melt events.

• Observational and model composites suggest that SSE barrier and katabatic winds
over the western slope of the GrIS ”block” the Baffin marine layer from penetrating
inland during periods of autumn surface melt.

• Unseasonal ablation area melt appears driven by synoptic forcing, namely
meridional circulation patterns and southerly winds that transport warm, moist air
masses across the southwestern portion of the GrIS.
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A number of insitu and passive microwave satellite sensors have observed Arctic sea ice
and Greenland Ice Sheet (GrIS) mass loss trends over recent decades. Along with sea
and land ice declines, above-freezing, near-surface air temperatures are observed earlier
in boreal spring and later in autumn thus extending periods of melt beyond the core of
summer (JJA). Little is known about whether lengthening periods of open ocean
proximate to the ice sheet, for instance, demonstrably effect unseasonal GrIS melt
events. Here, a new Baffin Bay sea ice advance dataset is utilized to determine dates of
sea ice growth along Greenland’s west coast for the 2011-2015 period. Preceding, multi-
scale ocean-atmospheric conditions, including at the Baffin-GrIS interface, are analyzed
and linked to unseasonal melt events observed at a series of on-ice automatic weather
stations (AWS) along the K-transect in southwest Greenland. The local marine versus
synoptic influence on the above and below freezing surface air temperature events is
assessed through analyses involving AWS winds, pressure, and humidity observations.
These surface observations are further compared against Modele Atmospherique
Regional (MAR), Regional Atmospheric Climate Model (RACMO2), and ERA-Interim
reanalysis fields to understand the airmass origins and (thermo)dynamic drivers of the
melt events. Results suggest that the K-transect transition season melt events, primarily
in the ablation zone, are strongly affected by ridging atmospheric circulation patterns
that transport warm, moist air from lower latitude land-ocean areas toward west
Greenland. While local conduction of oceanic surface heat appears to impact coastal air
temperatures, consistent with previous studies, marine air incursions from Baffin waters
onto the ice sheet are likely obstructed by barrier flows and the pressure gradient-driven
katabatic regime off of central Greenland.

Abstract

Study	Area

Figure 1. Study area
map with PROMICE and
IMAU K-transect sites
and nearby terrestrial
DMI stations at
Kangerlussuaq (WMO
code 4231) and Sisimiut
(WMO code 4234). The
inset displays the
northwest Atlantic
Arctic region with
superimposed GrIS
topographically-defined
boundaries adopted
from Ohmura and Reeh
(1991).
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This study addresses two primary research questions:
• Does the Baffin Bay marine layer influence unseasonal (i.e. late summer and autumn)

GrIS melt events?
• How does the mesoscale and synoptic environment support, or inhibit, an oceanic link

with GrIS melt events?

Research	Questions

Daily observations and model output are used for the 2011-2015 study period:
• Passive microwave-derived (25 km) dates of Baffin Bay sea ice advance (DOA = SIC ≥

15%; Bliss et al., in review)
• PROMICE (“KAN”; van As et al., 2011) and IMAU (“S”; Smeets et al., 2018) AWS

records of daily mean air temperature, wind speed and direction (see Figure 1 for
locations)

• Daily Greenland Blocking Index (GBI; Hanna et al., 2018) and North Atlantic Oscillation
Index (NAOI; Cropper et al., 2015)

• Integrated vapor transport (IVT), winds, and geopotential heights (GPH) from ERA-
Interim (Dee et al., 2011) with a self-organizing map (SOM) classification applied to
the former variable similar to Mattingly et al. (2016)

• RACMO2.3p2 (Noël et al., 2018) and MAR v3.9 (Fettweis et al., 2017) 10-m and 850
hPa wind fields

Composite analyses are based on KAN_B daily mean air temperatures of ³0°C (T+) and
<0°C (T-) observed over 60-31 day and 30-1 day bins preceding the Baffin Bay DOA;
statistical differences between T+ and T- events are assessed by the Wilcoxon test under
the null hypothesis of no difference (rejected when p£0.05).

Data	and	Methods

Figure 2. Composites of a) air
temperature, b) wind speed,
and c) wind direction for the
KAN_B T+ and T- events
preceding Baffin DOA, 2011-
2015. Significant differences
(p£0.05) between T+ and T-
composites for similar bins are
shown by asterisks (*)
between the bars. Panel d)
shows wind speed as a
function of direction for select
PROMICE stations.
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Figure 3. Composites of RACMO2 (left) and MAR (right) 10-m (black arrows) and 850 hPa
(cyan arrows) vector winds for the KAN_B T+ and T- events preceding Baffin DOA, 2011-
2015. Wind observations from PROMICE (green arrows) and IMAU (orange arrows) are
overlaid for reference.

Figure 4. Composite plots of IVT, 1000-700 hPa winds, and 500 hPa GPH for T+ and T-
events at KAN_B for the two periods preceding DOA (left). Bar graphs on the right
represent composites of a) SOM nodes by wet, neutral and dry types (%) and b)
normalized GBI and NAO values (unitless) for T+ and T- events at KAN_B for the two
periods preceding DOA. SOM aggregates represent the ratio of each pattern’s
occurrence to the sum of all patterns for each time period and similarly colored bars
sum to 100%. Significant differences (p£0.05) between T+ and T- composites by time
bins are shown by asterisks (*) between the bars.

T+ [-60,31]
T-  [-60,31]
T+ [-30,-1]
T-  [-30,-1]

*

*

*

a)

Wet Neutral Dry
0

10

20

30

40

50

60

70

80

90

100

Pe
rc

en
ta

ge
 o

f D
ay

s 
(%

)

*

*

*

b)

GBI NAOI
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

No
rm

al
ize

d 
Va

lu
es


