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Abstract

The Basque-Cantabrian basin is located in northern Spain in the westernmost part of the Pyrenees. It is a Mesozoic rift,

inverted during the Tertiary. In this basin, a subsiding deep-water depocenter, called the Basque Trough formed during the

Early Cretaceous, in response to the opening of the Bay of Biscay. In the Basque-Cantabrian basin, the Triassic salt-bearing red

clays are exposed in several diapirs that display discordant contacts with the Mesozoic and the Tertiary successions, suggesting

a long-lasting halokinetic growth at regional scale. The synthesis of previously published works, together with the analysis of

the geological maps from the Spanish geological survey (IGME) as well as the building of new structural cross-sections, allows

reviewing the history of halokinesis in the basin. At least four distinct areas may be defined according to the paleogeographical

locations of the diapirs: the northern and southern margins of the Basque Trough, and the southern and eastern areas of the

Basque-Cantabrian basin. In the northern margin of the Basque Trough, the Bakio and Gernika diapirs mainly recorded an

Aptian-Albian growth history, although older and younger growth cannot be ruled out. These diapirs were growing in relatively

deep-water environments and created some paleo-highs where isolated carbonate platforms developped. In the southern margin

of the Basque Trough, the Villasana de Mena, Orduña, Murgúıa diapirs recorded an Early Cretaceous to Late Turonian growth

evolution. These diapirs were growing in relatively shallow-water environments at the shelf of the southern margin. In the

southern area of the Basque-Cantabrian basin, the Salinas de Rośıo and Salinas de Añana diapirs recorded a Cretaceous salt

growth in a shallow-marine to continental environment and the Tertiary reactivation during the inversion of the basin. The

Salinas de Rośıo diapir shows a salt glacier overlying the adjacent Tertiary Villarcayo Syncline that displays a mini-basin shape

with a strong thinning of the Tertiary succession toward its margins. In the eastern area of the Basque-Cantabrian basin,

five diapirs (Estella, Alloz, Salinas de Oro, Ollo and Anoz) are aligned along the Pamplona fault, that represent a Cretaceous

transverse fault bounding the Basque Trough to the east. The Tertiary succession covers the older units masking the possible

Cretaceous salt growth evolution. However, strong thinning of the Tertiary succession toward these diapirs together with the

lateral facies changes highlights the Tertiary reactivation of these structures during the basin inversion. The compilation of all

these data allows creating a geological chart that depicts the evolution of the salt structures through time and in the different

areas of the Basque-Cantabrian basin.
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Diapirs of the northern margin

Long-lasting diapir growth history in the Basque-
Cantabrian basin (Northern Spain): a review

Introduction

Diapirs along the Pamplona transfert fault

Diapirs of the southern margin

The Basque-Cantabrian basin is an inverted rift, located in northern Spain in the western 
Pyrenean realm. Triassic gypsum and red clays forming the salt bodies are the oldest Mesozoic 
deposits of the basin. Jurassic to Late Barremian strata correspond to thin, fluvial, alluvial and 
shallow marine rocks. Aptian to Middle Albian units are represented by Urgonian carbonate 
platforms and lateral deeper marly deposits. During Late Albian a major  depocenter (the Basque 
Trough) formed in the center of the Basque-Cantabrian basin. This depocenter was bounded to 
the south by the Villasana de Mena-Orduña-Murguía diapirs line. It was bounded to the north by 
the Landes Massif, a basement block presently located offshore. The Basque Trough was filled by 
siliciclastic turbidites (Black Flysch Group) during Late Albian to Cenomanian and by calcareous 
turbidites from Late Cretaceous to Eocene. In the margins, siliciclastic shallow marine (Valmaseda 
Fm.) and fluvial sediments (Utrillas Fm.) deposited during Late Albian to Cenomanian and 
carbonate platforms dominated from Late Cretaceous to Eocene. The inversion of the basin 
started from Campanian and probably culminated during Miocene. Oligocene lacustrine 
limestones and Miocene continental conglomerates and sandstones mainly deposited in the 
Villarcayo Syncline and Miranda-Urbasa Syncline, in the southern part of the Basque-Cantabrian 
basin.

Figure 1: Geological map of the Basque-Cantabrian basin built by Ábalos (2016) from the IGME 
and EVE maps (Spanish and Basque geological surveys) and location of the sections presented in 
this work and the wells used for section building. The main salt bodies of the basin are numbered 
as following: 1, Bakio; 2, Gernika; 3, Villasana de  Mena; 4, Salinas de Rosío; 5, Orduña; 6, 
Murguía; 7, Salinas de Añana; 8, Maeztu; 9,  Estella; 10, Salinas de Oro; 11, Ollo; 12, Anoz. 

Diapir growth in the Basque-Cantabrian basin is known since the 1950s with the pionner work of 
Lotze (1953) and there is an abundant old literature about diapir growth in the area (e.g. Kind, 
1967; Brinkmann & Logters, 1967; García-Mondéja & Robador, 1987; Serrano & Martínez del 
Olmo, 1990). A renewed interest for this basin occurred as halokinetic sequences have been 
described around the  Bakio diapir (Poprawski et al., 2014 & 2016). The aim of this work is to 
provide a modern synthesis of these old works, usually hard to acces and published in German or 
Spanish languages, and to depict the diapir growth history of the basin, using new structural 
cross-sections through 10 salt bodies.

Geological settings

Figure 2: New structural cross-sections through the Villasana de Mena and Salinas de  Rosío 
diapirs (section A-B) and through the Murguía and Salinas de Añana diapirs (section C-D). Same 
colors than the geological map (fig. 1). In the section A-B, the lower orange strata represent the 
Paleocene and the upper one the Eocene-Oligocene. The section A-B has been built using the 
data from Meiburg et al. (1984) and Hernaiz-Huerta & Pond (2000), south  of the Salinas de Rosío 
diapir. Meiburg et al. (1984) documented a thinning of the Turonian to Miocene units, angular 
unconformities and a salt glacier interbedded with the Miocene deposits in the southern flank of 
the Salinas de Rosío diapir. The section C-D takes into acount the geometries at depth extracted 
from the seismic line  SA81-4 (IGME) for the Salinas de Añana diapir. The ages of the reflectors in 
the line SA81-4 are those proposed by Frankovic et al. (2016) in the northern flank of the diapir, 
while a new interpretation is proposed for the southern flank. The wedge geometry in the 
southern flank of the Murguía diapir is documented in Abalos et al. (2003). The small synclines 
(Campanian units) top of the Murguía diapir are assumed as a part of the diapir roof that 
subsided inside the salt. For both sections, geometries at depth are corroborated by the seismic 
lines of Serrano & Martínez del Olmo (1990).   

Figure 3: New structural cross-section through the Bakio and Gernika diapirs. Same colors than 
the geological map (fig. 1). The section has been built including the data of the Cormoran-1 and 
the Gernika-1 wells. Geometries at depth are inferred from the seismic lines BR89-03 & BR85-26 
and BR91-01 (IGME). The ages of the reflectors in the line BR91-01 are assumed from surface 
data, as Jurassic to Middle Albian units exposed  east of salt outcrops match with the reflectors. 
By contrast, in the lines BR89-03 & BR85-26, there is no direct connexion of reflectors with 
surface data, thus their ages are highly interpretative. The Cormoran-1 wells suggest that the 
sedimentary cover and the diapirs are transported toward the north, above the Landes Massif. 
The salt played as a decollement level (strike view on this section). Possible lateral  facies 
changes in the Aptian-Middle Albian units (García-Mondéja & Robador, 1987) have  been added 
on the section. The inferred angular unconformity on the seimsic lines  BR89-03 & BR85-26 may 
correspond with the unconformity of the Bakio breccias Fm. overlying the Bakio marls unit, 
exposed at surface (Poprawski et al., 2014 & 2016).

Figure 4: New structural cross-sections through the Estella salt body (section G-H) and  
through the Salinas de Oro, Ollo and Anoz diapirs (section I-J). Same colors than the  geological 
map (fig. 1), except for the Tertiary units (see the local outline for Tertiary). The section G-H has 
been built using the data of Larrasoaña et al. (2003). They showed that the Estella salt body 
may correspond to a salt anticline thrusted southward above the South Pyrenean basal thrust. 
This suggests a Tertiary (Miocene?) activation as a salt diapir  piercing the anticline hinge. An 
early (Cretaceous) growth cannot be ruled out as the Early Cretaceous units possibly thin 
toward the Estella salt body. Cretaceous strata are thick west of the Pamplona fault (Salinas de 
Oro, Ollo and Anoz diapirs line) and relatively thinner to the east, thus the Pamplona fault is 
considered as a normal Cretaceous fault. During the shortening, the Pamplona fault played as a 
transfert fault between two different thrust sheets moving southward and controlled by the 
different Cretaceous thicknesses. The reactivation of fault probably induce growth of the Salinas 
de Oro, Ollo and Anoz diapirs during Tertiary (section I-J), as documented by Kind et al. (1967). 
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Figure 5: Stratigraphic panel showing the long-lasting salt growth history in the Basque-
Cantabrian basin with the main references about salt structures. Most of the studied salt 
structures were active during the Aptian-Albian, when the subsidence occured in the Basque 
Trough. These structures have been reactivated by the shortening, during Tertiary.   
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