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Abstract

The backscattering coefficient of seawater, defined as the coefficient of scattering at angles > 90 degrees, includes contributions

from water and from any particles in the water. The water contribution has a relatively narrow range of values in the ocean, but

the particulate contribution depends on the number of particles in the water and their type. Measurements of the particulate

backscattering coefficient generally take advantage of the relatively small variability in scattering with angle at angles > 90

degrees to obtain an estimate of the backscattering coefficient from scattering at a single angle. Lidar has been used to infer the

backscattering coefficient from scattering at 180 degrees, but this depends on knowledge of the relationship between scattering

at this angle and the backscattering coefficient. It also depends on an absolute radiometric calibration, although this can be

avoided using high-spectral-resolution lidar. Here, we consider a technique to obtain the backscattering coefficient directly from

lidar data by calibration against passive ocean color measurements. The technique does not depend on retrieval of either the

lidar calibration coefficient or the relationship between the volume scattering function at 180 degrees and the backscattering

coefficient, but can be used to infer both quantities. The only requirement is that the relationship between the scattering

parameters not change significantly over the area, depth range, or duration of the measurements. Once the relationship is

found, it can be used where the satellite measurements are affected by clouds or vertical structure in the scattering.
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Abstract: The backscattering coefficient of seawater, defined as the coefficient of scattering at 

angles > 90 degrees, includes contributions from water and from any particles in the water. The 

water contribution has a relatively narrow range of values in the ocean, but the particulate 

contribution depends on the number of particles in the water and their type. Measurements of the 

particulate backscattering coefficient generally take advantage of the relatively small variability 

in scattering with angle at angles > 90 degrees to obtain an estimate of the backscattering 

coefficient from scattering at a single angle. Lidar has been used to infer the backscattering 

coefficient from scattering at 180 degrees, but this depends on knowledge of the relationship 

between scattering at this angle and the backscattering coefficient. It also depends on an absolute 

radiometric calibration, although this can be avoided using high-spectral-resolution lidar. Here, 

we consider a technique to obtain the backscattering coefficient directly from lidar data by 

calibration against passive ocean color measurements. The technique does not depend on 

retrieval of either the lidar calibration coefficient or the relationship between the volume 

scattering function at 180 degrees and the backscattering coefficient, but can be used to infer 

both quantities. The only requirement is that the relationship between the scattering parameters 

not change significantly over the area, depth range, or duration of the measurements. Once the 

relationship is found, it can be used where the satellite measurements are affected by clouds or 

vertical structure in the scattering. 

1. Introduction 

The backscattering coefficient of seawater is defined as the coefficient of scattering at angles 

> 90°. This includes contributions from water and from any particles in the water. The 

contribution from water depends slightly on water temperature and salinity [Shifrin, 1988], but it 

has a narrow range of values in the ocean. The contribution from particles depends on the type of 

particles in the ocean and their number density and has a much larger range of values. The 

particulate backscatter is important for remote sensing applications because of its relationship to 

chlorophyll concentration [Brewin et al., 2012; Huot et al., 2008], the concentration of 

particulate organic carbon [Stramski et al., 1999; Stramski et al., 2008], the carbon content of 

phytoplankton [Behrenfeld et al., 2005; Graff et al., 2015; Martinez-Vicente et al., 2013], and the 

total amount of particulate matter [Boss et al., 2004; Boss et al., 2009]. 

The angular dependence of particulate scattering at angles > 90° is remarkably similar across 

a wide variety of ocean waters, especially at scattering angles near 120° [Berthon et al., 2007; 

Boss and Pegau, 2001; Sullivan and Twardowski, 2009; Zhang et al., 2014]. This feature has 

been exploited by in situ instruments that infer particulate backscattering coefficient from 

scattering measurements at a single angle near 120°. This feature of oceanic scattering is the 

justification for neglecting the effects of sun angle to infer backscattering coefficient from 
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passive instruments in space [Gordon et al., 1988; Maritorena et al., 2002; Morel and Prieur, 

1977]. More recently, this feature has been applied to airborne [Churnside et al., 2017; Hair et 

al., 2016; Schulien et al., 2017] and space-based [Behrenfeld et al., 2013; Lu et al., 2014; Lu et 

al., 2016] lidar, which measures scattering at 180°. 

This paper describes a method to infer the backscattering coefficient from oceanographic 

lidar data using a calibration with passive ocean color measurements. In this method, we do not 

need to know the radiometric calibration factor of the lidar of the precise relationship between 

the volume scattering function at 180° and the backscattering coefficient. Instead, both quantities 

can be inferred from the method. 

2. Theory 

We will consider the photocathode current in the detector as the primary lidar signal. If the 

optical properties of the ocean are constant over the measurement depth range of a lidar, this 

signal is given by [Churnside, 2008] 

        exp ,π π 2p wI A zz          (1) 

where z is depth, A is a calibration factor, βp is the volume scattering function of particulate 

scattering, βw is the volume scattering function of scattering from seawater, and α is the lidar 

attenuation coefficient. We derive α from a linear fit to the logarithm of the signal, and correct 

the signal for the effects of attenuation to get 

     .π πp wI A        (2) 

The quality of the fit can be used as an indicator of whether or not the assumption of a uniform 

profile of the optical properties of the water quality is justified. 

The volume scattering function of seawater was taken to be βw(π) = 2.70×10-4 m-1 sr-1, based 

on the conditions over the study area [Mobley, 1994]. The particulate volume scattering function 

is related to the particulate backscattering coefficient, bbp, by 

  
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where χ is related to the shape of the particulate phase function for scattering angles > 90°. 

Therefore, we can express the lidar signal as 
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3. Methods 

For bbp, we used the total backscattering at 531 nm from the Moderate Resolution Imaging 

Spectroradiometer (MODIS) instruments on the Aqua and Terra satellites. The Level 3 data at 4 

km resolution were produced using the Generalized Inherent Optical Properties (GIOP) model 

[Werdell et al., 2013]. At the position of each lidar position, we identified Aqua and Terra 

MODIS pixels at that position on the day of the lidar flight, the day before and, the day after. We 

averaged any valid backscattering values within these six satellite images, and did not use lidar 

profiles with no satellite matches.  

We collected lidar data on ten days during the period July 8-20, 2015 off the west coast of 

Florida (Fig. 1). The lidar configuration for these measurements has been described previously 



[Churnside et al., 2017; Churnside and Marchbanks, 2017], but we processed the data slightly 

differently for this analysis. We selected every 25th lidar pulse in order to reduce the correlation 

between samples in the analysis. We converted digitization level into photocathode current using 

the known characteristics of the digitizer, logamp, and photomultiplier gain section. We 

identified the sea surface from the return, and performed a regression on the logarithm of the 

signal between depths of 2-10 m. We took the exponential of the intercept of that regression as 

the signal for that lidar pulse. To ensure that the optical properties of the water column were 

uniform for the data set, we removed lidar data where the standard deviation of the estimate of 

the intercept of the signal was σ > 0.02, which corresponds to an uncertainty of 2% in our 

estimate of the lidar signal.  

3. Results 

We selected a total of 35,192 data points for analysis using the criteria described above, and 

these are plotted in Fig. 2. The coefficient of determination, R2 = 0.68. Using an ordinary 

regression, the best fit, plotted as a dashed line in Fig. 2, was 

 142 1μAm 0.393 0.003μA,bpI b      (5) 

where the uncertainties in the parameters represent one standard deviation of the estimate. From 

the offset, we derived a calibration factor of A = 1460 μA m, and, from this value and the slope 

of the equation, we inferred a shape parameter of χ = 1.63. The root-mean-square error in bbp 

inferred using this equation was 0.0020 m-1. Where there is random variability in both variables, 

the Reduced Major Axis (RMA) regression may be more appropriate. The best fit for this 

regression, plotted as a solid line in Fig. 2, was 

 173 2 μAm 0.301 0.005μA.bpI b      (6) 

From these values, we inferred a calibration factor of A = 1110 μA m and a shape parameter of χ 

= 1.03. The root-mean-square error in bbp inferred using this equation was 0.0017 m-1. 

There are few estimates of the shape parameter at 180°, but there have been measurements 

at 170°. These include values of χ = 0.62 ± 0.22 at a coastal site in the NW Atlantic [Boss and 

Pegau, 2001], χ = 0.69 ± 0.08 at a coastal site in the Black Sea [Chami et al., 2006], and χ = 1.09 

± 0.06 at ten sites at coastal and open ocean locations [Sullivan and Twardowski, 2009]. The 

value we obtained from the ordinary regression is somewhat higher than we would expect from 

these measurements, but the RMA result is within the range of measured values. The RMA result 

is, however, still higher than the value of 0.5 that was used in a previous lidar study [Hair et al., 

2016].  

4. Conclusions 

We conclude that we can use satellites to calibrate airborne lidar. Specifically, we can use 

passive ocean color measurements of backscattering coefficient to calibrate lidar data and derive 

the backscattering coefficient from lidar data. We obtained a local relationship between the lidar 

signal and the particulate backscattering coefficient for the eastern Gulf of Mexico, with a 

coefficient of determination of R2 = 0.68. From this relationship, we derived the lidar calibration 

coefficient and the ratio of volume scattering function to backscattering coefficient. We 

recommend a reduced major axis regression rather than an ordinary regression. Using this 

regression, we obtained a value for χ that was more consistent with previous measurements and a 

lower rms error between the inferred and satellite measurements of backscattering coefficient. 



Future work will include a comparison of the calibration coefficient obtained by this method 

with a calculation using the lidar equation [Churnside, 2014] and laboratory measurements of 

system parameters. We also intend to apply the technique to lidar measurements in the Arctic 

Ocean, where passive ocean color measurements are difficult, and lidar has been suggested as a 

way to fill in the gaps [Behrenfeld et al., 2016; Churnside and Marchbanks, 2015; Hill and 

Zimmerman, 2010].  
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Figure 1. Map of lidar shots color coded by the value of satellite backscattering coefficient, bb. 

Background colors indicate water depth with changes at 200, 400, 600, 800, 1000, 1200, 1500, 

2000, and 3000 m. Gaps in flight tracks are because of gaps in satellite coverage or non-

uniformity in the lidar profile. 

 

 

Figure 2. Histogram plot of lidar signal current, I, as a function of MODIS particulate 

backscatter coefficient, bbp, with the number of samples in each bin denoted by color according 

to the color bar at the right. The ordinary regression is plotted as a dashed line. The reduced 

major axis regression as a solid line. 

 


