loading page

Influence of topography and winds on the distribution of water masses on the Antarctic Continental Shelf
  • +1
  • Christopher Y. S. Bull,
  • Christopher Y S Bull,
  • David R Munday,
  • Adrian Jenkins
Christopher Y. S. Bull

Corresponding Author:[email protected]

Author Profile
Christopher Y S Bull
Department of Geography and Environmental Sciences, Northumbria University
David R Munday
British Antarctic Survey
Adrian Jenkins
Department of Geography and Environmental Sciences, Northumbria University

Abstract

Central to improving our understanding of ocean temperature change on Antarctica’s continental shelf is a better understanding of how the ocean circulation drives the onshore flux of warm deep waters across the shelf break. This study uses a primitive equation ocean model to explore how the circulation regime and changes in surface stress influence the temperature structure on Antarctica’s shelf seas. As the shelf temperature changes are largely driven by ocean circulation changes, understanding these becomes our focus. A simple barotropic model is used to describe the linear theory of the difference between throughflow and gyres regimes, and their expected response to changes in forcing. This theory informs our understanding of the barotropic circulation response of the primitive equation model where a momentum and heat budget confirm that over the simulated equilibrated timescales with surface forcing changes, the response is first-order linear. Consistent with previous findings, we find that climate change projection-like wind shifts (stronger westerlies that shift south) have a direct influence on Ekman processes across the shelf break and upwell warmer waters onto the shelf. We also find that the circulation regime (throughflow or gyre – determined by basin geometry), influences the mean shelf temperature and how susceptible the existing shelf temperatures are to changes in surface stress. While the throughflow regime can experience a complete transition in on-shelf temperatures when the transition between westerly and easterly winds shifts southward, we find relatively modest warming at the coast in a gyre regime. Combinations of these regimes also experience coastal warming under a constant positive offset in the winds.
30 May 2024Submitted to ESS Open Archive
30 May 2024Published in ESS Open Archive