loading page

3D Multiresolution Velocity Model Fusion With Probability Graphical Models
  • Zheng Zhou,
  • Peter Gerstoft,
  • K B Olsen
Zheng Zhou

Corresponding Author:[email protected]

Author Profile
Peter Gerstoft
K B Olsen

Abstract

The variability in spatial resolution of seismic velocity models obtained via tomographic methodologies is attributed to many factors, including inversion strategies, ray path coverage, and data integrity. Integration of such models, with distinct resolutions, is crucial during the refinement of community models, thereby enhancing the precision of ground motion simulations. Toward this goal, we introduce the Probability Graphical Model (PGM), combining velocity models with heterogeneous resolutions and non-uniform data point distributions. The PGM integrates data relations across varying-resolution subdomains, enhancing detail within low-resolution domains by utilizing information and prior knowledge from high-resolution subdomains through a maximum posterior (MAP) problem. Assessment of efficacy, utilizing both 2D and 3D velocity models-consisting of synthetic checkerboard models and a fault zone model from Ridgecrest, CA-demonstrates noteworthy improvements in accuracy, compared to state-of-the-art fusion techniques. Specifically, we find reductions of 30% and 44% in computed travel-time residuals for 2D and 3D models, respectively, as compared to conventional smoothing techniques. Unlike conventional methods, the PGM's adaptive weight selection facilitates preserving and learning details from complex, non-uniform high-resolution models and applies the enhancements to the low-resolution background domain.
09 Feb 2024Submitted to ESS Open Archive
10 Feb 2024Published in ESS Open Archive