loading page

Long-lived Deep Coherent Vortices in the Northeast Atlantic Ocean
  • Ashwita Chouksey,
  • Jonathan Gula,
  • Xavier J. Carton
Ashwita Chouksey
Université de Bretagne Occidentale

Corresponding Author:ashwita.chouksey@univ-brest.fr

Author Profile
Jonathan Gula
Université de Bretagne Occidentale
Author Profile
Xavier J. Carton
Universite de Bretagne Occidentale
Author Profile


Ocean eddies play an important role in the distribution of heat, salt, and other tracers in the global ocean. But while surface eddies have been studied extensively, deeper eddies are less well understood. Here we study deep coherent vortices (DCVs) in the Northeast Atlantic Ocean using a high resolution numerical simulation. We perform a census of the DCVs on the $27.60$ kg/m$^3$ isopycnal, at the depth of $700-1500$ m, where DCVs of Mediterranean water (meddies) propagate. We detect a large number of DCVs, with maxima around continental shelves, and islands, dominated by small and short-lived cyclones. However, the large and long-lived DCVs are mostly anticyclonic. Among the long-lived DCVs, anticyclonic meddies, stand out. They grow in size by merging with other anticyclonic meddies. Cyclonic meddies are also regularly formed, but most of them are destroyed near their formation sites due to the presence of the energetic anticyclonic meddies, which destroy cyclones by straining and wrapping the positive vorticity around their core. During their life cycle, as they propagate to the southwest, anticyclonic meddies can interact with other DCVs, including anticyclones containing Antarctic Intermediate Water generated near the Moroccan coast, Canary anticyclonic DCVs and cyclonic DCVs generated south of $30^\circ$N along the African continental shelf. With these latter, they can form dipoles, and with the former, they co-rotate pro tempore. Thus, a more detailed view of the life cycle of anticyclonic meddies is proposed: they grow by merging, undergo multiple interactions along their path, and they decay at low latitudes.
28 Sep 2023Submitted to ESS Open Archive
28 Sep 2023Published in ESS Open Archive