loading page

Inverse Climate Modelling Study of the Planet Venus
  • Philip Mulholland,
  • Stephen Paul Rathbone Wilde
Philip Mulholland
Mulholland Geoscience

Corresponding Author:philip.mulholland@uclmail.net

Author Profile
Stephen Paul Rathbone Wilde
Mulholland Geoscience


The terrestrial planet Venus is classified by astronomers as an inferior planet because it is located closer to the Sun than the Earth. Venus orbits the Sun at a mean distance of 108.21 Million Km and receives an average annual solar irradiance of 2601.3 W/m 2 , which is 1.911 times that of the Earth. A set of linked forward and inverse climate modelling studies were undertaken to determine whether a process of atmospheric energy retention and recycling could be established by a mechanism of energy partition between the solid illuminated surface and an overlying fully transparent, non-greenhouse gas atmosphere. Further, that this atmospheric process could then be used to account for the observed discrepancy between the average annual solar insolation flux and the surface tropospheric average annual temperature for Venus. Using a geometric climate model with a globular shape that preserves the key fundamental property of an illuminated globe, namely the presence on its surface of the dual environments of both a lit and an unlit hemisphere; we established that the internal energy flux within our climate model is constrained by a process of energy partition at the surface interface between the illuminated ground and the overlying air. The dual environment model we have designed permits the exploration and verification of the fundamental role that the atmospheric processes of thermal conduction and convection have in establishing and maintaining surface thermal enhancement within the troposphere of this terrestrial planet. We believe that the duality of energy partition ratio between the lit and unlit hemispheres applied to the model, fully accounts for the extreme atmospheric "greenhouse effect" of the planet Venus. We show that it is the meteorological process of air mass movement and energy recycling through the mechanism of convection and atmospheric advection, associated with the latitudinal hemisphere encompassing Hadley Cell that accounts for the planet's observed enhanced atmospheric surface warming. Using our model, we explore the form, nature and geological timing of the climatic transition that turned Venus from a paleo water world into a high-temperature, high-pressure carbon dioxide world.
08 Apr 2023Submitted to ESS Open Archive
16 Apr 2023Published in ESS Open Archive