loading page

New estimates of the pan-Arctic sea ice--atmosphere neutral drag coefficients from ICESat-2 elevation data
  • +2
  • Alexander Mchedlishvili,
  • Gunnar Spreen,
  • Christof Lüpkes,
  • Alek Aaron Petty,
  • Michel Tsamados
Alexander Mchedlishvili
Institut für Umweltphysik, Universität Bremen

Corresponding Author:alexander.mchedlishvili@uni-bremen.de

Author Profile
Gunnar Spreen
University of Bremen
Author Profile
Christof Lüpkes
Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung
Author Profile
Alek Aaron Petty
University of Maryland, College Park
Author Profile
Michel Tsamados
University College London
Author Profile


The effect that sea ice topography has on the momentum transfer between ice and atmosphere is not fully quantified due to the vast extent of the Arctic and limitations of current measurement techniques. Here we present a method to estimate pan-Arctic momentum transfer via a parameterization which links sea ice-atmosphere form drag coefficients with surface feature height and spacing. We measure these sea ice surface feature parameters using the Cloud and land Elevation Satellite-2 (ICESat-2) which, though it cannot resolve as well airborne surveys, has a higher along-track spatial resolution than other contemporary altimeter satellites. As some narrow obstacles are effectively smoothed out by the ICESat-2 ATL07 spatial resolution, we use near-coincident high-resolution Airborne Topographic Mapper (ATM) elevation data from NASA’s Operation IceBridge (OIB) mission to scale up the regional ICESat-2 drag estimates. By also incorporating drag due to open water, floe edges and sea ice skin drag, we produced a time series of average total pan-Arctic neutral atmospheric drag coefficient estimates from October 2018 to May 2022. Here we have observed its temporal evolution to be unique and not directly tied to sea ice extent. By also mapping 3-month aggregates for the years 2019, 2020 and 2021 for better regional analysis, we found the thick multiyear ice area directly north of the Canadian Archipelago and Greenland to be consistently above 2.0 · 10⁻³ with rough ice ~ 1.5 · 10⁻³ typically filling the full multiyear ice portion of the Arctic each Spring.