loading page

Cycles-L: A coupled, 3-D, land surface, hydrologic, and agroecosystem landscape model
  • Yuning Shi,
  • Felipe Montes,
  • Armen R Kemanian
Yuning Shi
The Pennsylvania State University
Author Profile
Felipe Montes
Pennsylvania State University
Author Profile
Armen R Kemanian
Pennsylvania State University

Corresponding Author:kxa15@psu.edu

Author Profile

Abstract

Managing landscapes to increase agricultural productivity and environmental stewardship requires spatially distributed models that can integrate data and operate at spatial and temporal scales that are intervention-relevant. This paper presents Cycles-L, a landscape-scale, coupled agroecosystem hydrologic modeling system. Cycles-L couples a 3-D land surface hydrologic model, Flux-PIHM, with a 1-D agroecosystem model, Cycles. Cycles-L takes the landscape and hydrology structure from Flux-PIHM and most agroecosystem processes from Cycles. Consequently, Cycles-L can simulate landscape level processes affected by topography, soil heterogeneity, and management practices, owing to its physically-based hydrologic component and ability to simulate horizontal and vertical transport of mineral nitrogen (N) with water. The model was tested at a 730-ha agricultural experimental watershed within the Mahantango Creek watershed in Pennsylvania. Cycles-L simulated well stream water discharge and N exports (Nash-Sutcliffe coefficient 0.55 and 0.58, respectively), and grain crop yield (root mean square error 1.01 Mg ha−1), despite some uncertainty in the accuracy of survey-based input data. Cycles-L outputs are as good if not better than those obtained with the uncoupled Flux-PIHM (water discharge) and Cycles (crop yield) models. Model predicted spatial patterns of N fluxes clearly show the combined control of crop management and topography. Cycles-L spatial and temporal resolution fills a gap in the availability of analytical models at an operational scale relevant to evaluate costly strategic and tactical interventions in silico, and can become a core component of tools for applications in precision agriculture, precision conservation, and artificial intelligence-based decision support systems.