loading page

Interacting effects of root exudate compounds and δ13C-barley shoot residue on micro-mechanical behaviour of soil measured by rheometry
  • +1
  • Ewan Oleghe,
  • Muhammad Naveed,
  • Liz Baggs,
  • Paul Hallett
Ewan Oleghe
Rutgers, The State University of New Jersey

Corresponding Author:ewan.oleghe@rutgers.edu

Author Profile
Muhammad Naveed
University of West London
Author Profile
Liz Baggs
The University of Edinburgh
Author Profile
Paul Hallett
University of Aberdeen
Author Profile


Laboratory studies have shown that rhizodeposits could lead to either soil structural formation or dispersion depending on plant species, soil conditions, and microbial activity. However, these studies have usually been conducted in dry soils and rarely considered the combined effect of rhizodeposit and organic residues on soil structure. This study hypothesizes that root exudates promote soil dispersion initially, but over time decomposition of root exudates produce binding agents that promote stable soil structure in the rhizosphere. To test this hypothesis, a sandy loam soil sieved to < 500 µm particle size was first amended with root exudate compounds (14.4 mg C g-1), δ13C-barley residue (0.44 mg C g-1 soil), or both. Six replicate samples per treatment were packed in cores to a bulk density of 1.27 g cm-3 and then equilibrated on a tension table at -2 kPa matric potential. Rheological measurements of flow characteristics (dynamic viscosity) and strength (storage modulus, loss modulus, tan δ, and yield stress) of the control and amended soils were obtained immediately after amendment and after twelve days of incubation at 20 oC. Only root exudate compounds initially decreased the capacity of soil to retain water at -2 kPa by 21% and by 49% after incubation. Likewise, the yield stress of root exudate amended soil was significantly (P < 0.05) lower than that of the unamended soil, reflecting dispersion of soil. However, microbial decomposition/activities significantly (P < 0.05) increased yield stress over the corresponding pre-incubation values for these treatments by 200% (root exudate) and 230% (root exudate + δ13C-barley residue). These results confirmed the hypothesized dual effect of root exudates on rhizosphere structure. The initial soil dispersion may facilitate root growth by augmenting soil penetrability and releasing nutrients that were occluded in soil aggregates, whereas stable soil structure is achieved upon decomposition of root exudates.