Seasonal changes in the vertical structure of ozone in the Martian lower
atmosphere and its relationship to water vapour
Abstract
The mid-infrared channel of the Atmospheric Chemistry Suite (ACS MIR)
onboard the ExoMars Trace Gas Orbiter is capable of observing the
infrared absorption of ozone (O3) in the atmosphere of Mars. During
solar occulations, the 003←000 band (3000-3060 cm-1) is observed with
spectral sampling of ~0.045 cm-1. Around the equinoxes
in both hemispheres and over the southern winters, we regularly observe
around 200-500 ppbv of O3 below 30 km. The warm southern summers, near
perihelion, produce enough atmospheric moisture that O3 is not
detectable at all, and observations are rare even at high northern
latitudes. During the northern summers, water vapour is restricted to
below 10 km, and an O3 layer (100-300 ppbv) is visible between 20-30 km.
At this same time, the aphelion cloud belt forms, condensing water
vapour and allowing O3 to build up between 30-40 km. A comparison to
vertical profiles of water vapour and temperature in each season reveals
that water vapour abundance is controlled by atmospheric temperature,
and H2O and O3 are anti-correlated as expected. When the atmosphere
cools, over time or over altitude, water vapour condenses (observed as a
reduction in its mixing ratio) and the production of odd hydrogen
species is reduced, which allows O3 to build up. Conversely, warmer
temperatures lead to water vapour enhancements and ozone loss. The LMD
Mars Global Climate Model is able to reproduce vertical structure and
seasonal changes of temperature, H2O, and O3 that we observe. However,
the observed O3 abundance is larger by a factor of 2-6, indicating
important differences in the rate of odd-hydrogen photochemistry.