loading page

Controls on spatial and temporal patterns of slope deformation in a paraglacial environment
  • +5
  • Nicolas Oestreicher,
  • Simon Loew,
  • Clément Roques,
  • Jordan Balfour Aaron,
  • Adriano Gualandi,
  • Laurent Longuevergne,
  • Philippe Limpach,
  • Marc Hugentobler
Nicolas Oestreicher
ETH Zurich

Corresponding Author:[email protected]

Author Profile
Simon Loew
Swiss Federal Institute of Technology in Zurich
Author Profile
Clément Roques
University of Rennes 1
Author Profile
Jordan Balfour Aaron
ETH Zurich
Author Profile
Adriano Gualandi
Istituto Nazionale di Geofisica e Vulcanologia
Author Profile
Laurent Longuevergne
CNRS - Université Rennes 1
Author Profile
Philippe Limpach
Author Profile
Marc Hugentobler
ETH Zurich
Author Profile


A comprehensive surface displacement monitoring system installed in the recently deglaciated bedrock slopes of the Aletsch Valley shows systematic reversible motions at the annual scale. We explore potential drivers for this deformation signal and demonstrate that the main driver is pore pressure changes of phreatic groundwater in fractured granitic mountain slopes. The spatial pattern of these reversible annual deformations shows similar magnitudes and orientations for adjacent monitoring points, leading to the hypothesis that the annually reversible deformation is caused by slope-scale groundwater elevation changes and rock mass properties. Conversely, we show that the ground reaction to infiltration from snowmelt and summer rainstorms can be highly heterogeneous at local scale, and that brittle-ductile fault zones are key features for the groundwater pressure-related rock mass deformations. We also observe irreversible long-term trends (over the 6.5 yr dataset) of deformation in the Aletsch valley composed of a larger uplift than observed at our reference GNSS station in the Rhone valley, and horizontal displacements of the slopes towards the valley. These observations can be attributed respectively to the elastic bedrock rebound in response to current glacier mass downwasting of the Great Aletsch Glacier and gravitational slope deformations enabled by cyclic groundwater pressure-related rock mass fatigue in the fractured rock slopes.