loading page

Slow slip events and megathrust coupling changes reveal the earthquake potential before the 2020 Mw 7.4 Huatulco, Mexico, event
  • +5
  • Carlos Villafuerte,
  • Víctor M. Cruz-Atienza,
  • Josué Tago,
  • Darío Solano-Rojas,
  • Sara Franco,
  • Ricardo Garza-Girón,
  • Luis Antonio Dominguez,
  • Vladimir Kostoglodov
Carlos Villafuerte
Posgrado en Ciencias de la Tierra, Instituto de Geofísica, Universidad Nacional Autónoma de México, Mexico City, Mexico., Posgrado en Ciencias de la Tierra, Instituto de Geofísica, Universidad Nacional Autónoma de México, Mexico City, Mexico., Posgrado en Ciencias de la Tierra, Instituto de Geofísica, Universidad Nacional Autónoma de México, Mexico City, Mexico.

Corresponding Author:villafuerte.cd@gmail.com

Author Profile
Víctor M. Cruz-Atienza
Instituto de Geofísica, Universidad Nacional Autónoma de México, Mexico City, Mexico., Instituto de Geofísica, Universidad Nacional Autónoma de México, Mexico City, Mexico., Instituto de Geofísica, Universidad Nacional Autónoma de México, Mexico City, Mexico., Instituto de Geofísica, Universidad Nacional Autónoma de México, Mexico City, Mexico.
Author Profile
Josué Tago
Facultad de Ingeniería, Universidad Nacional Autónoma de México, Mexico City, Mexico, Facultad de Ingeniería, Universidad Nacional Autónoma de México, Mexico City, Mexico, Facultad de Ingeniería, Universidad Nacional Autónoma de México, Mexico City, Mexico, Facultad de Ingeniería, Universidad Nacional Autónoma de México, Mexico City, Mexico
Author Profile
Darío Solano-Rojas
Facultad de Ingeniería, Facultad de Ingeniería, Facultad de Ingeniería, Facultad de Ingeniería
Author Profile
Sara Franco
Instituto de Geofísica, Universidad Nacional Autónoma de México, Mexico City, Mexico., Instituto de Geofísica, Universidad Nacional Autónoma de México, Mexico City, Mexico., Instituto de Geofísica, Universidad Nacional Autónoma de México, Mexico City, Mexico., Instituto de Geofísica, Universidad Nacional Autónoma de México, Mexico City, Mexico.
Author Profile
Ricardo Garza-Girón
Department of Earth and Planetary Sciences, University of California, Santa Cruz, USA., Department of Earth and Planetary Sciences, University of California, Santa Cruz, USA., Department of Earth and Planetary Sciences, University of California, Santa Cruz, USA., Department of Earth and Planetary Sciences, University of California, Santa Cruz, USA.
Author Profile
Luis Antonio Dominguez
Escuela Nacional de Estudios Superiores, Campus Morelia, Universidad Nacional Autónoma de México, Mexico, Escuela Nacional de Estudios Superiores, Campus Morelia, Universidad Nacional Autónoma de México, Mexico, Escuela Nacional de Estudios Superiores, Campus Morelia, Universidad Nacional Autónoma de México, Mexico, Escuela Nacional de Estudios Superiores, Campus Morelia, Universidad Nacional Autónoma de México, Mexico
Author Profile
Vladimir Kostoglodov
Instituto de Geofísica, Universidad Nacional Autónoma de México, Mexico City, Mexico., Instituto de Geofísica, Universidad Nacional Autónoma de México, Mexico City, Mexico., Instituto de Geofísica, Universidad Nacional Autónoma de México, Mexico City, Mexico., Instituto de Geofísica, Universidad Nacional Autónoma de México, Mexico City, Mexico.
Author Profile

Abstract

Stress accumulation on the plate interface of subduction zones is a key parameter that controls the location, timing and rupture characteristics of earthquakes. The diversity of slip processes occurring in the megathrust indicates that stress is highly variable in space and time. Based on GPS and InSAR data, we study in depth the evolution of the interplate slip-rate along the Oaxaca subduction zone, Mexico, from December 2016 through August 2020, with particular emphasis on the pre-seismic, coseismic and post-seismic phases associated with the June 23, 2020 Mw 7.4 Huatulco earthquake to understand how different slip processes contribute to the stress accumulation in the region. Unlike two time-invariant interplate coupling models previously proposed for the region, our results show that continuous changes in both the stress-releasing aseismic slip and the coupling produced a high stress concentration (i.e. Coulomb Failure Stress (CFS) of 700  100 kPa) over the main asperity of the Huatulco earthquake and a stress shadow zone in the adjacent updip region (i.e. shallower than 17 km depth with CFS around -500 kPa). These findings may explain both the downdip rupture propagation (between 17 and 30 km depth) and its impediment to shallower, tsunamigenic interface regions, respectively. Interplate coupling time variations in the 2020 Huatulco and the nearby 1978 (Mw 7.8) Puerto Escondido rupture zones clearly correlate with the occurrence of the last three Slow Slip Events (SSEs) in Oaxaca far downdip of both zones, suggesting that SSEs are systematically accompanied by interplate coupling counterparts in the seismogenic zone that in turn have their own potentially-seismogenic stress and frictional implications. In the same period, the interface region of the 1978 event experienced a remarkably high CFS built-up of 1,000-1,700 kPa, half imparted by the co-seismic and early post-seismic slip of the neighboring Huatulco rupture, indicating large earthquake potential near Puerto Escondido. Continuous monitoring of the interplate slip-rate thus provides a better estimation of the stress accumulation in the seismogenic regions than those given by time-invariant coupling models and improves our understanding of the megathrust mechanics where future earthquakes are likely to occur.