Slow slip events and megathrust coupling changes reveal the earthquake
potential before the 2020 Mw 7.4 Huatulco, Mexico, event
Carlos Villafuerte

Posgrado en Ciencias de la Tierra, Instituto de Geofísica, Universidad Nacional Autónoma de México, Mexico City, Mexico., Posgrado en Ciencias de la Tierra, Instituto de Geofísica, Universidad Nacional Autónoma de México, Mexico City, Mexico., Posgrado en Ciencias de la Tierra, Instituto de Geofísica, Universidad Nacional Autónoma de México, Mexico City, Mexico.
Corresponding Author:villafuerte.cd@gmail.com
Author ProfileVíctor M. Cruz-Atienza

Instituto de Geofísica, Universidad Nacional Autónoma de México, Mexico City, Mexico., Instituto de Geofísica, Universidad Nacional Autónoma de México, Mexico City, Mexico., Instituto de Geofísica, Universidad Nacional Autónoma de México, Mexico City, Mexico., Instituto de Geofísica, Universidad Nacional Autónoma de México, Mexico City, Mexico.
Author ProfileJosué Tago

Facultad de Ingeniería, Universidad Nacional Autónoma de México, Mexico City, Mexico, Facultad de Ingeniería, Universidad Nacional Autónoma de México, Mexico City, Mexico, Facultad de Ingeniería, Universidad Nacional Autónoma de México, Mexico City, Mexico, Facultad de Ingeniería, Universidad Nacional Autónoma de México, Mexico City, Mexico
Author ProfileSara Franco
Instituto de Geofísica, Universidad Nacional Autónoma de México, Mexico City, Mexico., Instituto de Geofísica, Universidad Nacional Autónoma de México, Mexico City, Mexico., Instituto de Geofísica, Universidad Nacional Autónoma de México, Mexico City, Mexico., Instituto de Geofísica, Universidad Nacional Autónoma de México, Mexico City, Mexico.
Author ProfileRicardo Garza-Girón

Department of Earth and Planetary Sciences, University of California, Santa Cruz, USA., Department of Earth and Planetary Sciences, University of California, Santa Cruz, USA., Department of Earth and Planetary Sciences, University of California, Santa Cruz, USA., Department of Earth and Planetary Sciences, University of California, Santa Cruz, USA.
Author ProfileLuis Antonio Dominguez
Escuela Nacional de Estudios Superiores, Campus Morelia, Universidad Nacional Autónoma de México, Mexico, Escuela Nacional de Estudios Superiores, Campus Morelia, Universidad Nacional Autónoma de México, Mexico, Escuela Nacional de Estudios Superiores, Campus Morelia, Universidad Nacional Autónoma de México, Mexico, Escuela Nacional de Estudios Superiores, Campus Morelia, Universidad Nacional Autónoma de México, Mexico
Author ProfileVladimir Kostoglodov
Instituto de Geofísica, Universidad Nacional Autónoma de México, Mexico City, Mexico., Instituto de Geofísica, Universidad Nacional Autónoma de México, Mexico City, Mexico., Instituto de Geofísica, Universidad Nacional Autónoma de México, Mexico City, Mexico., Instituto de Geofísica, Universidad Nacional Autónoma de México, Mexico City, Mexico.
Author ProfileAbstract
Stress accumulation on the plate interface of subduction zones is a key
parameter that controls the location, timing and rupture characteristics
of earthquakes. The diversity of slip processes occurring in the
megathrust indicates that stress is highly variable in space and time.
Based on GPS and InSAR data, we study in depth the evolution of the
interplate slip-rate along the Oaxaca subduction zone, Mexico, from
December 2016 through August 2020, with particular emphasis on the
pre-seismic, coseismic and post-seismic phases associated with the June
23, 2020 Mw 7.4 Huatulco earthquake to understand how different slip
processes contribute to the stress accumulation in the region. Unlike
two time-invariant interplate coupling models previously proposed for
the region, our results show that continuous changes in both the
stress-releasing aseismic slip and the coupling produced a high stress
concentration (i.e. Coulomb Failure Stress (CFS) of 700 100 kPa) over
the main asperity of the Huatulco earthquake and a stress shadow zone in
the adjacent updip region (i.e. shallower than 17 km depth with CFS
around -500 kPa). These findings may explain both the downdip rupture
propagation (between 17 and 30 km depth) and its impediment to
shallower, tsunamigenic interface regions, respectively. Interplate
coupling time variations in the 2020 Huatulco and the nearby 1978 (Mw
7.8) Puerto Escondido rupture zones clearly correlate with the
occurrence of the last three Slow Slip Events (SSEs) in Oaxaca far
downdip of both zones, suggesting that SSEs are systematically
accompanied by interplate coupling counterparts in the seismogenic zone
that in turn have their own potentially-seismogenic stress and
frictional implications. In the same period, the interface region of the
1978 event experienced a remarkably high CFS built-up of 1,000-1,700
kPa, half imparted by the co-seismic and early post-seismic slip of the
neighboring Huatulco rupture, indicating large earthquake potential near
Puerto Escondido. Continuous monitoring of the interplate slip-rate thus
provides a better estimation of the stress accumulation in the
seismogenic regions than those given by time-invariant coupling models
and improves our understanding of the megathrust mechanics where future
earthquakes are likely to occur.