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Introduction

This supporting information provides additional text and figures describing the results

shown and discussed in the main article ”Extending GLUE with Multilevel Methods

to Accelerate Statistical Inversion of Hydrological Models”. Texts S1 and S2 provide

additional details on the derivation of MLGLUE. Texts S3 and S4 provide more detailed

descriptions of results for the example inverse problems with a rainfall-runoff model and a

groundwater flow model, respectively. Figures S1 and S2 illustrate results for the rainfall-

April 12, 2024, 2:39pm



X - 2 :

runoff modelling example. Figures S3 and S4 illustrate results for the groundwater flow

modelling example.

Text S1 - Derivation of MLGLUE, the Wrong Combination of MLMC and

GLUE

Assuming that likelihood thresholds are given on each level prior to sampling, a straight-

forward approach to combining MLMC and GLUE would be to use an MLMC algorithm

(e.g., Giles, 2015) directly. Then, only model simulations would be considered that corre-

spond to likelihoods that are above the level-dependent likelihood threshold. With that, as

most MLMC samples come from lower levels, posterior parameter samples would mainly

be comprised of samples from the posterior distribution corresponding to the coarser-level

models. We aim, however, at generating samples that come from the posterior distribu-

tion on the finest level. This combination is therefore not purposeful. Otherwise we could

directly use the model on level ℓ = 0 to perform statistical inversion on a single level,

which contradicts the actual aim of the methodology.

Text S2 - Derivation of MLGLUE, Level-Dependent Likelihood Thresholds

Using level-dependent likelihood thresholds instead of the highest-level threshold for all

levels is motivated by the construction of the MLDA algorithm (Lykkegaard et al., 2023)

as well as by the original delayed acceptance MCMC algorithm (Christen & Fox, 2005).

In MLDA, different target densities are considered on each level because the likelihood

function - seen as a (hyper-) surface in the parameter space - depends on the model used

on a corresponding level. In the sense of Bayes’ theorem, those densities can be considered

to be Bayesian posterior densities. This is an intuitive construction; conside evaluations

April 12, 2024, 2:39pm



: X - 3

of the quantity of interest on different levels, made with the same parameter samples,

{Qℓ(θ
(i)),Qℓ+1(θ

(i))}Ni=1, as well as corresponding likelihods {L̃ℓ(θ
(i)|Ỹ), L̃ℓ+1(θ

(i)|Ỹ)}Ni=1:

Qℓ(θi) ̸= Qℓ+1(θi) (1)

⇒L̃ℓ(θ
(j)|Ỹ) ̸= L̃ℓ+1(θ

(j)|Ỹ) (2)

⇒L̃T,ℓ ̸= L̃T,ℓ+1 (3)

Therefore, level-dependent likelihood thresholds instead of a single highest-level thresh-

old used on all levels need to be considered to accurately reflect the variations within the

hierarchy of models.

Text S3 - Additional Description of Results, Rainfall-Runoff Modelling

With MLDA, a total number of Nℓ=L = 2, 000 samples were computed on the highest

level using nchains = 20 and a subsampling rate of 5, resulting in a total of NMLDA =

2, 000·52·20 = 1, 000, 000 samples from the prior distribution. No samples were burnt from

the 20 MLDA chains on the highest level, resulting in R̂ = 1.0 for all 5 parameters. Out

of the 40, 020 remaining samples (including randomly initialized samples on the highest

level), only 8, 204 effective samples could be used (mean effective sample size estimate

for the bulk of the posterior). Therefore, a thinning of 5 was applied, resulting in 8, 020

effective samples. With MCMC, a total number of Nℓ=L = 50, 000 samples were computed

on the highest level using nchains = 20, resulting in a total of NMCMC = 50, 000 · 20 =

1, 000, 000 samples from the prior distribution. No samples are burnt from the 20 MCMC

chains, resulting in R̂ = 1.00 for all parameters. Out of the 1, 000, 020 remaining samples

(including randomly initialized samples), only 16, 353 effective samples could be used
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(mean effective sample size estimate for the bulk of the posterior). Therefore, a thinning

of 62 was applied, resulting in 16, 140 effective samples.

Text S4 - Additional Description of Results, Groundwater Flow

With MLDA, a total number of Nℓ=L = 250 samples were computed on the highest

level using nchains = 32, resulting in a total of NMLDA = 250 · 53 · 32 = 1, 000, 000 samples

from the prior distribution. No sample was burnt from the 32 MLDA chains, resulting in

a mean Gelman-Rubin statistic of R̂ = 1.02 (R̂min = 1.01, R̂max = 1.03), averaged over

all 51 parameters. Out of the 8, 032 remaining samples (including randomly initialized

samples on the highest level), only 1, 982 effective samples could be used (mean effective

sample size estimate for the bulk of the posterior). Therefore, a thinning of 4 was applied,

resulting in 2, 008 effective samples. With MCMC, a total number of Nℓ=L = 31, 250

samples were computed on the highest level using nchains = 32 and a subsampling rate

of 5, resulting in a total of NMCMC = 31, 250 · 32 = 1, 000, 000 samples from the prior

distribution. The initial sample was burnt from the 32 MCMC chains, resulting in a mean

Gelman-Rubin statistic of R̂ = 1.02 (R̂min = 1.01, R̂max = 1.03), averaged over all 51

parameters. Out of the 1, 000, 000 remaining sample, only 2, 080 effective samples can

be used (mean effective sample size estimate for the bulk of the posterior). Therefore, a

thinning of 481 was applied, resulting in 2, 080 effective samples.
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Figure S1. Level-dependent likelihood thresholds for the rainfall-runoff modelling example,

estimated with different numbers of tuning samples for threshold settings corresponding to the

top 2 % (left) and the top 7 % (right)

Figure S2. Relations between levels for the linear regression example, using an informal

likelihood
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Figure S3. Level-dependent likelihood thresholds for the groundwater flow example, estimated

with different numbers of tuning samples for threshold settings corresponding to the top 2 %

(left) and the top 7 % (right)

Figure S4. Relations between levels for the groundwater flow example, using an informal

definition of the likelihood
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